Reccommended citation:

For copies of the management plan, or for additional information on species at risk, including COSEWIC Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry (www.sararegistry.gc.ca).

Cover illustration: Monarch © Karine Bériault 2007

Également disponible en français sous le titre
« Plan de gestion du monarque (Danaus plexippus) au Canada [Proposition] »

© Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2014. All rights reserved.
ISBN
Catalogue no.

Content (excluding the illustrations) may be used without permission, with appropriate credit to the source.
PREFACE

The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of management plans for listed Special Concern species and are required to report on progress within five years.

The Minister of the Environment and the Minister responsible for the Parks Canada Agency are the competent ministers for the management of the Monarch and have prepared this management plan in cooperation with the provincial governments of British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Québec, New Brunswick, Nova Scotia and Prince Edward Island.

Success in the conservation of this species cannot be achieved by Environment Canada, Parks Canada Agency, or any other jurisdiction alone. Instead it will depend on the commitment and cooperation of many interested parties that will be involved in implementing the recommendations set out in this management plan. All Canadians are invited to support the management plan and to contribute to its implementation in the interest of the Monarch and Canadian society as a whole. Implementation of this plan is subject to appropriations, priorities, and budgetary constraints of the participating jurisdictions and organizations.
ACKNOWLEDGMENTS

Gratitude is extended to Karine Bériault who prepared the first draft of this management plan, and to the jurisdictional representatives who contributed to its development, including: Mark Elderkin (Nova Scotia Department of Natural Resources), Maureen Toner (New Brunswick Department of Natural Resources), Isabelle Gauthier, Jacques Jutras and Nathalie Desrosiers, (Ministère du Développement Durable, de l'Environnement, de la Faune et des Parcs), Amelia Argue and Jay Fitzsimmons (Ontario Species at Risk Branch), Catherine Jong (Ontario Ministry of Natural Resources – Southern Region), Corina Brdar (Ontario Parks) and Jim Saunders, Brian Naylor and Dana Kinsman (Forest Policy Section), Lisa Wilkinson (Alberta Environment and Sustainable Resource Development), and Leah Westereng (British Columbia Ministry of Environment).

Numerous researchers and Monarch enthusiasts also contributed to the writing and development of this document. This management plan would not have come to fruition without the help and advice received from Donald Davis (Ontario Nature), Jennifer Heron (British Columbia Provincial Government), Jean Lauriault (Canadian Museum of Nature), Michel Leboeuf, Yves Dubuc (researchers in Quebec), Maxim Larivée and Stéphane Le Tirant (Montréal Insectarium) and Jocelyne Jacob (National Capital Commission).

Valuable input and review was also provided by Mary Rothfel, Robert Décarie, Louise Kingsley, Lucie Métras, Kimberley Hair and Paul Johanson (Environment Canada, Canadian Wildlife Service (EC-CWS)), Vincent Carignan, Michel Saint-Germain and Caroline Bureau (EC-CWS – Quebec Region), Lesley Dunn, Madeline Austen, Ken Tuninga and Kari Van Allen (EC-CWS – Ontario Region), Medea Curteneau (EC-CWS – Prairie and Northern Region) and Kella Sadler (EC-CWS – Pacific and Yukon Region). Mark Richardson (EC-CWS) created the Monarch migration map.
EXECUTIVE SUMMARY

The Monarch is an insect for which the remarkable lifecycle and migration of certain populations has attracted the attention of people worldwide. In North America, the Monarch is a symbol of international cooperation, conservation and appreciation of nature. Although the Monarch lives in temperate regions during the summer, no life stage of the Monarch is able to survive temperate-zone winters and each autumn Monarch migrate south to overwintering sites, and then return to the southern portion of their breeding range the following spring to begin the cycle again.

In the Americas, the Monarch comprises five populations with different overwintering areas but without discrete genetic differentiation. They are the Eastern North American, Western North American, Southern Florida, Cuban and Central American populations. In Canada, the Monarch comprises two mostly disjunct populations: a large and widely distributed Eastern population and a smaller Western population. This management plan addresses both the Eastern and Western populations. It is estimated that between 10% and 15% of the North American breeding population of Monarch is found in Canada, although density varies from year to year.

The Monarch was listed as a species of Special Concern under Canada’s Species at Risk Act (SARA) in 2003. This designation was based on the premise that, although this species has a population of millions to over one billion individuals, it is vulnerable in the most sensitive stage of its annual cycle, during its overwintering. The overwintering areas occupied by Monarch are very restricted and threats to these sites, combined with threats to breeding habitat and along migratory routes, are sufficient to suggest that the species could become threatened in the near future. The Eastern and Western Monarch populations have declined dramatically over the past 15 to 20 years and during the 2013-14 overwintering period the Eastern population occupied only 0.67 ha of overwintering habitat, compared with a 1994-2014 average of 6.39 ha.

Limiting factors for Monarch include their restricted overwintering grounds, the impact of parasitoids and parasites, unstable spring conditions in the Gulf of Mexico coastal states where the first breeding event occurs following their overwintering in Mexico (Eastern population), and predation on their overwintering grounds.

The primary threats facing Monarch include the degradation and loss of overwintering habitat in Mexico and along the Californian coast, the widespread use of pesticides and herbicides throughout their breeding grounds, climate change, severe weather events, succession and/or conversion of breeding and nectaring habitat, and for the Eastern population, the impacts of Bark Beetles on overwintering habitat.

The objectives of this Management Plan are:

- to mitigate threats to Monarch and ensure that there is sufficient breeding, nectaring and staging habitat in Canada to maintain the current Canadian contribution to the overall North American Monarch population; and
- to support the conservation and management of overwintering, staging, breeding and nectaring habitat by international partners throughout the Monarch’s migratory range, in order to allow for continued Monarch persistence in Canada.

Broad strategies and conservation measures have been identified to help achieve the management objectives for the Monarch.
TABLE OF CONTENTS

PREFACE ... i
ACKNOWLEDGMENTS ... ii
EXECUTIVE SUMMARY ... iii
1. COSEWIC* SPECIES ASSESSMENT INFORMATION ... 1
2. SPECIES STATUS INFORMATION ... 1
3. SPECIES INFORMATION .. 2
 3.1 Species Description ... 2
 3.2 Populations and Distribution ... 3
 3.3 Life Cycle .. 6
3.4 Needs of the Monarch ... 9
 3.4.1 Habitat and biological needs .. 9
 3.4.2 Limiting factors ... 11
4. THREATS .. 13
 4.1 Threat Assessment ... 13
 4.2 Description of Threats .. 14
5. MANAGEMENT OBJECTIVES ... 18
6. BROAD STRATEGIES AND CONSERVATION MEASURES .. 19
 6.1 Actions Already Completed or Currently Underway ... 19
 6.2 Broad Strategies .. 23
 6.3 Conservation Measures .. 23
7. MEASURING PROGRESS .. 27
8. REFERENCES .. 28
APPENDIX A: EFFECTS ON THE ENVIRONMENT AND OTHER SPECIES 38
APPENDIX B: ORGANIZATIONS AND PROGRAMS INVOLVED IN MONARCH OUTREACH, CONSERVATION AND RESEARCH .. 39
1. COSEWIC* SPECIES ASSESSMENT INFORMATION

<table>
<thead>
<tr>
<th>Date of Assessment:</th>
<th>April 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name (population):</td>
<td>Monarch</td>
</tr>
<tr>
<td>Scientific Name:</td>
<td>Danaus plexippus</td>
</tr>
<tr>
<td>COSEWIC Status:</td>
<td>Special Concern</td>
</tr>
</tbody>
</table>

Reason for Designation: This species has a population of millions to over one billion individuals. The most sensitive stage of its annual cycle is overwintering. There are two main overwintering areas: the Oyamel Fir Forests of Central Mexico, where 90% of the population overwinters, and the coastal regions of California. The overall area of these sites is relatively small, and threats, especially from logging in the Oyamel Fir Forests are sufficient to suggest that the species could become Threatened in the near future.

Canadian Occurrence: BC, AB, SK, MB, ON, QC, NB, PE, NS

*Committee on the Status of Endangered Wildlife in Canada

2. SPECIES STATUS INFORMATION

Globally, the rank assigned to the Monarch is G5 (secure) (NatureServe, 2013). See Table 1 for a list and description of the various jurisdictional conservation ranks. It is estimated that between 10% and 15% of the North American breeding population of the Monarch is found in Canada, but density varies from year to year (Oberhauser, pers. comm., 2012). In Canada, the Monarch was listed as Special Concern under the federal Species at Risk Act in 2003. It is also listed as Special Concern under Ontario’s Endangered Species Act, 2007 and New Brunswick’s Species at Risk Act, 2012.

Table 1. List and description of various conservation status ranks for the Monarch (NatureServe, 2013; ACCDC, 2013a).

<table>
<thead>
<tr>
<th>G-Rank* Global rank</th>
<th>N-Rank National rank</th>
<th>S-Rank Sub-national rank (Canada)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5</td>
<td>Canada: N4N5B</td>
<td>Alberta (S3<sup>1</sup>); British Columbia (S3B); Newfoundland Island (S2B) and Labrador (SNR); Manitoba (S5<sup>1</sup>); New Brunswick (S3B); Nova Scotia (S2B); Ontario (S4B); Prince Edward Island (S1B); Quebec (S5B); Saskatchewan (S3B)</td>
</tr>
<tr>
<td></td>
<td>USA: N5B,N2N3</td>
<td></td>
</tr>
</tbody>
</table>

*The conservation status of a species is designated by a number from 1 to 5, preceded by a letter reflecting the appropriate geographic scale of the assessment (G = Global, N = National, and S = Subnational). The numbers have the following meaning: 1 = critically imperiled, 2 = imperiled, 3 = vulnerable, 4 = apparently secure, 5 = secure. B = breeding.

¹ Although the S-Ranks for Alberta and Manitoba are listed in NatureServe as S3 and S5 respectively, both are breeding populations, as in other jurisdictions.
3. SPECIES INFORMATION

3.1 Species Description

The Monarch is a member of the Order Lepidoptera (butterflies and moths) and the family Nymphalidae, sub-family Danainae, and is also known as the Milkweed butterfly (COSEWIC, 2010). The Monarch, like all butterflies, has a life cycle composed of four stages: egg, larvae (or caterpillar), pupa (or chrysalis), and adult.

The Monarch egg is whitish, somewhat oval in shape and has a flat base with a bluntly pointed apex (tip) (COSEWIC, 2010). In the wild, female butterflies lay between 300 and 400 eggs, but can lay between 500 and 700 eggs in captivity (Oberhauser, 1997).

The Monarch larvae is recognizable by its distinctive white, yellow and black bands and a pair of black filaments at its head and tail (see Figure 1) (Carmichael and Vance, 2004). In Canada, Monarch larvae feed only on milkweeds (Asclepias spp) (Marshall, 2006). Monarch larvae undergo five instars (intervals between molts) over a period of 9 to 13 days.

The pupa is green and gold, and is found attached to a substrate, sometimes a milkweed plant (Figure 2). This is the least-studied stage of the Monarch, due to the difficulty in locating pupa in the wild (Oberhauser, 2004). Monarch pupa are cryptically coloured, as opposed to the bright warning colouration exhibited by adults. On the final day as a pupa, the orange black and white pattern of the adult wings becomes visible through the pupa covering (CEC, 2008).

The adult Monarch is a relatively large butterfly, with a wing span of between 9 and 11cm. Its bright orange wings have black veins, and black edges that contain white spots along the margin. The underside of the wings is a dull orange colour, so that when the wings are folded in rest, the
butterfly appears camouflaged as it clusters or rests singly in trees or other substrates (CEC, 2008). Color and size variations have been observed in adults. Males and females can be distinguished by a black spot (scent gland) found only on the hind wings of males (Carmichael and Vance, 2004). In central Canada and eastern United States where their ranges overlap, adults are sometimes confused with the North American Viceroy butterfly (Limenitis archippus), which is similar to the Monarch but is smaller and is distinguished by a black line crossing the hind wing (Carmichael and Vance, 2003; CEC, 2008).

3.2 Populations and Distribution

The Monarch is indigenous to the Americas (North, Central and South) but has been introduced to many other countries and islands where populations persist, including: Portugal, Spain, Australia, New Zealand, Hawaii and other Pacific Islands such as the Philippines (Shappert, 2004).

There are five populations of Monarch found in the Americas, each with different overwintering areas but without discrete genetic differentiation: the Eastern, Western, Southern Florida, Cuban and Central American populations (COSEWIC, 2010). Monarch from the Caribbean and northern South America are a subspecies of Monarch (Danaus plexippus megalippe), while North American Monarch are the subspecies D. p. plexippus (Dockx, 2004). Only the Eastern and Western populations of Monarch migrate and overwinter.

Populations not occurring in Canada

In southern Florida, small Monarch butterfly resident populations are known to exist (Altizer et al., 2000). Some resident populations have also been reported in Texas, but are likely temporary and are periodically lost due to freezing temperatures (Brower, pers. comm. in COSEWIC, 2010).

In Cuba, there are also Monarch butterfly resident populations in which individuals vary in wing length and shape, and noticeably differ in behaviour from those in the Eastern population (Dockx et al., 2004). Monarchs from the Eastern population do travel to Cuba and may hybridize with resident Monarchs, but are not believed to return to the USA in the spring, as Monarchs that overwinter in Mexico do (Dockx, 2004).

In Central America, the Monarch occurs from southern Mexico to Panama (COSEWIC, 2010). Unlike the more northern populations, the Central American population is relatively sedentary and is reproductively active throughout the year (Haber, 1993).

Populations occurring in Canada

In Canada, two mostly disjunct migratory populations of the Monarch occur: the Eastern population and the Western population. The approximate distribution of the Monarch in Canada is shown in Figure 3. Most of the individuals found in British Columbia overwinter in California, and most of the individuals from east of the Rocky Mountains in Canada overwinter in Central Mexico. Nonetheless, recent findings indicate that there is mixing of the two populations and that the Western population may be reinforced by individuals from the Eastern population (Lyons et al., 2012).
Eastern population

The Eastern population’s annual breeding range extends from the Gulf of Mexico coastal states (Texas, Louisiana, Mississippi, Alabama, Georgia, and Florida) northwards to southern Canada (Alberta to New Brunswick and Nova Scotia), and from the Great Plains States and Prairie Provinces eastwards to the Atlantic Coast and the Maritime Provinces (COSEWIC, 2010).

The breeding habitat of the Eastern population has changed significantly over the last 150 years (Brower, 1995). The prairies of central North America are thought to have been the main breeding area for the Eastern population prior to the 1880s. In the latter half of the 19th century, as the prairies were cultivated and the eastern forests were cleared for agriculture, a rapid eastward and northern spread in Common Milkweed (Asclepias syriaca) may have led to a major shift eastward for Monarch breeding habitat (Brower, 1995). The historically cleared deciduous forest corresponds with the main current breeding range of the Eastern population (Urquhart, 1960). During the middle and latter part of the 20th century, it became increasingly challenging to maintain small farms, and the consequent increase in abandoned farmland in the east created a substantial amount of suitable habitat for breeding and nectaring butterflies (COSEWIC, 2010). In certain areas, Monarch breeding habitat may be more abundant today than previously, particularly as milkweed is commonly sold in nurseries and as butterfly gardens have increased in popularity (R. Parrot, pers. comm. in COSEWIC, 2010).

Southern Ontario and southern Quebec represent the most extensive breeding area in Canada, where abandoned farmland and other open areas, such as ditches, meadows and hedgerows, serve as prime habitat for the widespread Common Milkweed (COSEWIC, 2010). In the Prairie Provinces, the breeding distribution of the Monarch is concentrated in the south where Showy Milkweed (Asclepia speciosa) occurs. Monarch abundance decreases northwards and westwards from Manitoba to Alberta. As the Monarch feeds solely on milkweeds during its larval stage in Canada, individuals observed north and east of the range limit of milkweeds (Asclepias spp.) are considered vagrants (non-breeding individuals) (COSEWIC, 2010). Vagrant butterflies have been observed in Newfoundland and the Northwest Territories, as well as in northern areas of other provinces.

Although the Monarch is uncommon to rare in Alberta and Prince Edward Island, in some years, adults and larvae have been found in these two provinces (Davis, pers. comm. in COSEWIC, 2010; Layberry et al., 1998; Bird et al., 1995; Pohl et al., 2011). For example, in the summer of 2012, Monarch were observed ovipositing and feeding on Showy Milkweed and Swamp Milkweed (Asclepias incarnata) in Vegreville, Alberta and their entire life cycle was documented with the adults observed emerging from their pupa in early July and August (Hughes, 2012). Evidence shows that in some years the Monarch breeds on Prince Edward Island on patches of the native Swamp Milkweed and on the introduced Common Milkweed. In New Brunswick and Nova Scotia, the Monarch breeds in scattered locations due to the limited distribution of milkweed. Due to a lack of milkweed in Newfoundland, the Monarch does not breed in this province.
During their fall migration, the Monarch has been observed roosting on trees along the northern shores of Lake Ontario and Lake Erie. Roosts can be predictably found in areas such as Presqu’ile Provincial Park, Long Point Provincial Park, Long Point National Wildlife Area, Rondeau Provincial Park and Point Pelee National Park (COSEWIC, 2010). The departure of hundreds of thousands of Monarch from Point Pelee National Park in any given year has been observed numerous times (Wormington, 1994, 1997, 2008; COSEWIC, 2010).

Western population

The Western population’s annual breeding range extends from the southwestern United States (Arizona and New Mexico) northwards to southern British Columbia and from the Rocky Mountains westwards to the Pacific Coast (COSEWIC, 2010). In British Columbia the Monarch is generally restricted to the dry Southern Interior, where it is frequently observed. The Monarch is also infrequently observed at other locations in B.C., such as the Lower Fraser Valley, on Vancouver Island, and in the Rocky Mountain Trench (Guppy and Shepard, 2001). Showy Milkweed, which is the only milkweed native to British Columbia, occurs in the dry areas of the Southern Interior and serves as the Monarch’s larval food plant (Guppy and Shepard, 2001). Although Milkweed is still abundant in the Southern Interior, its distribution and abundance could be negatively impacted by land clearing or range weed control programs (Guppy and Shepard, 2001). Observations from the Lower Mainland and coastal regions of British Columbia are likely of wayward migrants, as host plant availability and wet weather are not considered favourable for Monarch.

Population Size

Since the discovery of Monarch overwintering sites in Mexico in 1975 by Canadian entomologists Fred and Norah Urquhart after a 38 year search (Urquhart, 1976), monitoring and reporting of Monarch butterfly sightings and migrations have been underway throughout North America and Mexico. Monarch populations are monitored in many locations to determine local densities, numbers passing through migratory sites, and areas occupied at the overwintering sites. Certain monitoring programs also assess the timing or location of spring and fall migratory movement. These programs indicate that despite the wide distribution of Monarch for the majority of its life cycle, individuals tend to concentrate in certain areas at given times during migration and also use highly restricted overwintering sites (COSEWIC, 2010).

The number of Monarch butterflies in both the Eastern and Western populations can fluctuate frequently, and sometimes dramatically, from year to year (COSEWIC, 2010); however, since the late 1990s both the Eastern and Western Monarch populations have declined significantly (Rendón-Salinas and Tavera-Alonso, 2014; Monroe et al., 2013).

Eastern population

Monitoring the areas occupied by overwintering Monarch in the Oyamel Fir (*Abies religiosa*) forests of central Mexico provides a yearly estimate for the Eastern Monarch population because this is their sole overwintering area. Roosting butterflies in Mexico, on average, are found in densities of 5,000/ m² (Brower et al., 2004) which means that even when the area occupied by the Monarch was less than 2 ha during the winter of 2009-2010, there would have been almost 100 million butterflies. In 1996-1997, the year with the largest total area occupied by all overwintering colonies, there would have been nearly 1 billion butterflies (Slayback et al., 2007;
COSEWIC, 2010). Reliable information on colony sizes and locations are available beginning from the 1994-1995 overwintering period and are available on the World Wildlife Fund Mexico website. Prior to this, information was not collected in a comparable manner (Brower et al., 2012).

Estimates of the average total area occupied by Monarch colonies at overwintering sites in Mexico between 2004 and 2014 (Mean=3.51ha) reveal a significant population decline in comparison to the average between 1994 and 2014 (Mean=6.39ha) (Taylor, 2014). Recent censuses indicate a 44% decline in overwintering populations between 2012-2013 and 2013-2014, following a decline of 59% from the previous year. The area occupied by overwintering Monarchs was only 0.67ha in 2013-14, representing the smallest population observed since the Monarch colonies began to be monitored in 1993 (Rendón-Salinas and Tavera-Alonso, 2014; and Rendón-Salinas and Tavera-Alonso, 2013).

Western population

It has been reported that the number of Monarch overwintering in California may be 1-2 million (Xerces Society for Invertebrate Conservation, 2013 and COSEWIC, 2010); however, there has been a dramatic decline (greater than 90%) of the Western population of Monarch between 1997 and 2012 (Monroe et al, 2013). In recent years, a few other overwintering sites have been found in Baja California, Mexico but the number of Monarch at these sites is unknown.

3.3 Life Cycle

Both the Eastern and Western Monarch populations are migratory and have a complex life cycle. Although they live in temperate regions during the summer, unlike other temperate insects, no life stage of the Monarch can survive temperate-zone winters. Every autumn, North American Monarch butterflies migrate south to overwintering sites, and then return to the southern portion of their breeding range the following spring to begin the cycle again (see Figure 3). Although some butterflies and moths travel long distances, they generally go in one direction, whereas the Monarch is the only butterfly to make such a long, two-way migration (MonarchLab 2013), with individuals from the Eastern population flying up to 3600 km to reach their winter destination (Brower, 1996a). Monarch butterflies can reduce their energy expenditure during the fall migration to the overwintering grounds by soaring, gliding and riding columns of rising warm air to reach altitudes where strong prevailing winds speed their flight (Gibo and Pallet, 1979; Gibo, 1981).

Eastern Population

In March or early April, Monarchs that have overwintered in Mexico mate and begin their northward migration. This is the first generation of adults that starts re-colonising the Monarch breeding range in North America. Both males and females leave overwintering sites, with females laying their eggs on the resurgent milkweed in the Gulf of Mexico coastal states (Brower, 1996a). Most Monarchs will die following this initial breeding event; however, there have been reports of individuals making the entire return journey to Ontario. Such individuals have been recorded at Point Pelee in late April and early May but were in poor physical

2 that part of the earth which lies between either tropic and the corresponding polar circle; having a climate that is warm in the summer, cold in the winter, and moderate in the spring and fall.
condition (Wormington, pers. comm. in COSEWIC, 2010). Within the same season, adults of the new generation continue the migration to the northern edges of their breeding range. Along the way, they produce subsequent generations, and typically reach southern Canada near the end of May and the first week of June (Wormington, 2008).

In southern Canada, the Eastern population of Monarch produces two to three generations each year between June and September (Holmes et al., 1991). The eggs hatch in three to eight days (Schappert, 2004) and the larvae feed on the leaves, flowers and fruits of milkweed plants for nine to fifteen days under normal summer temperatures (Oberhauser, 2004). Development from egg to adult butterfly averages 30 days but can range between 20 and 45 days depending on factors such as temperature, day length, and availability of the food plant (COSEWIC, 2010).

Summer generation adults live about 30 days. The late summer generation adults emerge in a state called reproductive diapause, in which reproductive organs are in an undeveloped immature state. These adults migrate to their overwintering sites in central Mexico. These individuals live seven to nine months without breeding or laying eggs until the following spring. The long southward migration of the Eastern population toward central Mexico typically starts in early August, although the Monarch has been seen in Canada heading south in early November (Wormington, pers. comm.in COSEWIC, 2010).

The migration routes of the Eastern population of Monarch either concentrate in a “central flyway”, which involves migration through Kansas, Oklahoma and Texas en route to Mexico, or an “eastern flyway” that involves migration along the Atlantic seaboard and then along the Gulf Coast (see Figure 3). The butterflies following the central route seem to be more successful in reaching the overwintering grounds in Mexico, whereas the more eastern route may reinforce the southern Florida and Cuban populations (Brindza et al., 2008; Howard and Davis, 2009; COSEWIC, 2010).

Western population

The Western population undergoes a similar but shorter migration from the overwintering sites along the coast of California and in Baja, California in Mexico to the breeding range, which includes areas in Arizona, New Mexico and the southern interior of British Columbia as well as the Pacific coastal states in the United States (see Figure 3). Similar to the Eastern population, spring and summer adults of the Western population live for about one month, and those that overwinter and migrate live between seven and nine months (CEC, 2008).
Figure 3. Map showing the spring and fall migration pattern of Monarch butterflies and approximate spring and summer breeding distribution (Adapted from Monarch Watch, 2010).
3.4 Needs of the Monarch

3.4.1 Habitat and biological needs

The Monarch requires the following four types of habitat for persistence: breeding, nectaring, staging and overwintering (COSEWIC, 2010).

Breeding habitat

As Monarch larvae feed solely on the leaves, flowers and fruits of the milkweed, a member of the dogbane family (Apocynaceae), their breeding habitat is tightly associated with the presence of these plants. In Canada, Monarch larvae feed solely on milkweeds in the genus Asclepias, but in the United States larvae are known to feed on the Honeyvine Milkweed (Cynanchum laeve) (Yeargan and Allard, 2005).

There are 14 species of milkweed in Canada. The most prevalent milkweeds upon which the Monarch feeds are the Common Milkweed, Swamp Milkweed, Butterfly Milkweed (Asclepias tuberosa) and Showy Milkweed. Milkweeds grow in a variety of environments, including farmlands, open wetlands, dry sandy areas, short grass and tall grass prairie, agricultural areas, river banks, irrigation ditches, arid valleys, south-facing hillsides, and along roadsides and in roadside ditches. Milkweeds are also often planted in gardens. In the wild, the vast majority of butterflies found at overwintering sites in Mexico (85%) are known to have developed on the Common Milkweed and Showy Milkweed (Seiber et al., 1986; Malcolm, 1987).

Nectaring habitat

Nectaring habitat occurs throughout the breeding range of the Monarch in various environments ranging from native grasslands to home gardens and road medians. Adult butterflies feed on a variety of wildflowers as nectar sources (COSEWIC, 2010). These nectar sources are vital to Monarch survival, but are particularly important during the fall migration when sugars from the nectar are converted to fat, which provides Monarchs with energy for successful overwintering (COSEWIC, 2010). Goldenrods (Solidago spp.), asters (Aster spp.), and related genera such as Symphytrichum spp., Doellingeria spp., Virgulus spp., Oclema spp., and Purple Loosestrife (Lythrum salicaria L.), as well as milkweeds (Asclepias spp.), are most frequently used as nectar sources (COSEWIC, 2010). Anecdotal evidence also suggests that migrating butterflies from the Eastern population select clover (Fabaceae spp.) fields along their migration routes for nectaring (J. Powers and D. Davis, pers. comm. in COSEWIC, 2010).

Staging habitat

Staging areas are important during migrations to allow the Monarch to feed and deposit fat reserves and to rest at night before resuming their flight (Davis et al., 2012). Fat reserves provide the energy necessary for migration and are also essential for overwintering survival. Within staging areas, Monarchs appear to be flexible in terms of roost site selection, with sites often observed in pines, conifers, maples, oaks, pecan and willows (Davis et al., 2012).
The Great Lakes pose a significant geographic obstacle to the Monarch during migrations. In the fall, large clusters (or aggregations) of butterflies tend to occur along the shores of Lakes Erie and Lake Ontario, as they rest and feed before embarking on the flight across the water. This makes Southern Ontario a primary management area for the Monarch in Canada. In Ontario, butterflies have been observed in late summer or early fall in large numbers in areas such as Prince Edward Point National Wildlife Area, Presqu’île Provincial Park, Tommy Thompson Park (Toronto), Long Point National Wildlife Area and nearby areas, Rondeau Provincial Park, and Point Pelee National Park. There are also reports of Monarchs staging in areas of southwest Nova Scotia before crossing the Bay of Fundy (M. Elderkin, pers. comm.)

Overwintering habitat

Overwintering sites which are essential for Monarch survival are only known to occur in very restricted areas, with unique habitat characteristics, in Mexico and the United States.

Eastern population

Overwintering sites of the Eastern population of the Monarch are located in the Oyamel Fir forests of central Mexico (Urquhart, 1976; Slayback et al., 2007). Millions of adult Monarch aggregate on Oyamel Fir trees on 12 mountain massifs west of Mexico City in the Transverse Neovolcanic Belt (also called the Transvolcanic Belt) that crosses Mexico from the Pacific to the Atlantic Ocean (Brower, 1996). Oyamel Fir Forests are specialized high altitude ecosystems that occur only between elevations of 2,400 and 3,600 metres. These high altitude forests provide a unique microhabitat which allows Monarch to lower their metabolic rate and reduce their activity between mid-November and mid-March (Brower, 1996). The forest fir trees provide cover and protect the Monarch from freezing, severe rain, snow, desiccation, and windstorms (Brower et al. 2002).

Approximately thirty overwintering Monarch colonies are known to exist and are spread over an area roughly 6400 km² in size (WWF Mexico, 2013); however, suitable forested areas within the appropriate elevation cover only approximately 562 km² (Slayback et al., 2007). Within this 562 km² area, Monarchs may be found on the same stands of trees as their predecessors were found, two to four generations removed, or may settle in the same general area and elevation but up to 1.5 km away (Slayback et al., 2007).

Western Population

The overwintering habitat of the Western population occurs from Ensenada in Baja California, Mexico to Rockport California, and rarely extends inland more than 1 or 2 km from the coast (Sakai pers comm. in COSEWIC, 2010). Approximately 400 overwintering sites have been recorded (Schappert, 2004) and the vast majority of them are associated with stands of non-native Australian eucalyptus trees (COSEWIC, 2010; MonarchWatch, 2005). Eucalyptus were introduced to California in the 1850s (Lane, 1993), and were widely planted for landscaping, as windbreaks, and for use as fuel (COSEWIC, 2010). This dispersal also coincided with the deforestation of coastal stands of native tree species, such as Monterey Pine (*Pinus radiata*) and Monterey Cypress (*Cupressus macrocarpa*). The native pine and cypress are also used by the Monarch as overwintering habitat, but to a lesser degree today as they have become less abundant (Lane, 1993).
3.4.2 Limiting factors

Restricted overwintering grounds

The availability of suitable overwintering sites is a major limiting factor for the Monarch. Due to the specialized microclimatic conditions needed for the Monarch to overwinter successfully and the restricted areas within which these are found, suitable overwintering sites are few in number, particularly for the Eastern population (approximately 30 sites in Mexico).

Spring conditions for migration

Spring conditions in the Gulf of Mexico coastal states (Texas, Louisiana, Mississippi, Alabama, Georgia and Florida) are a significant limiting factor for the Eastern population of Monarch. This is where Monarchs that have overwintered in Mexico gather before they start their northward migration in March and early April. Stable spring conditions without major wind storms, drought or excessive rains, allow for optimal milkweed emergence and arriving butterflies can successfully reproduce there, and their descendants can continue the migration northward (D. Davis, pers. comm. in COSEWIC, 2010). Spring and summer weather that is either too hot, or too cold, has been shown to lower breeding season survivorship and fecundity and alter larval growth rates (Brower et al, 2012). For more information on the impact of weather conditions on Monarch populations, see the ‘Climate change’ and ‘Severe weather events’ discussion in Section 4.2.

Parasitoids and parasites

Both the Eastern and Western populations of the Monarch are host to a number of parasitoids. A large suite of invertebrates prey upon on Monarch eggs and larvae, which can cause a mortality rate exceeding 90% over the course of the butterfly’s development (Oberhauser, 2004, 2012). Parasitoids lay their eggs on larvae, and emerge from the carcasses of their prey at different stages in the Monarch life cycle: larvae, pupa, and adults. These parasitoids include a number of fly and wasp species, such as tachinid flies (Tachinidae) which are widespread (Oberhauser et al., 2007, 2012).

The Monarch is also host to parasites, viruses, protozoans and bacteria. Of these, the protozoan Ophryocystis elektroscirrha has been well studied, and has been found to reduce the survival of Monarch larvae and reduce adult butterfly mass and lifespan (Altizer and Oberhauser, 1999). The prevalence of O. elektroscirrha is highly variable among Monarch populations, but appears to vary inversely with host migration distances (McLaughlin & Myers, 1970). The Western population which undergoes a shorter migration tend to be heavily infected (approximately 30% of butterflies), whereas the longest-distance migrants of the Eastern population experience infection to a lesser degree (less than 8% of butterflies).
Predation at overwintering sites

Predation of Monarch at overwintering sites in Mexico by Black-headed Grosbeak (*Pheucticus melanocephalus*) and Black-backed Oriole (*Icterus galbula abeillei*) has been observed to cause up to 10% (or 2 million) mortality of one Monarch overwintering colony (Arellano et al. 1993). Predation at smaller colonies, which have a proportionally greater circumference, may reach as high as 44%, because birds typically feed around the perimeter of the colony (Calvert et al. 1979). Predation at overwintering sites in California, by Chestnut-backed Chickadees (*Parus rufescens*), European Starlings (*Sturnus vulgaris* L.) and Scrub Jays (*Aphelocoma coerulescens*) has also been observed (Sakai, 1994).
4. **THREATS**

4.1 **Threat Assessment**

The Monarch faces a wide range of direct and indirect threats throughout its range (see Table 2).

Table 2. Threat assessment table for the Monarch.

<table>
<thead>
<tr>
<th>Threat</th>
<th>Level of Concern¹</th>
<th>Extent</th>
<th>Occurrence</th>
<th>Frequency</th>
<th>Severity²</th>
<th>Causal Certainty³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat Degradation or Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overwintering habitat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest loss and degradation resulting from logging, agriculture, and charcoal production</td>
<td>High</td>
<td>Mexico</td>
<td>Current</td>
<td>Continuous</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Housing development</td>
<td>Medium</td>
<td>California</td>
<td>Current</td>
<td>One time</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Eucalyptus stand removals</td>
<td>Medium</td>
<td>California</td>
<td>Current</td>
<td>One time</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Bark beetle outbreak</td>
<td>Low</td>
<td>Mexico</td>
<td>Current</td>
<td>Unknown</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Breeding and nectaring habitat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widespread use of pesticides and herbicides</td>
<td>High</td>
<td>Breeding range</td>
<td>Current</td>
<td>Seasonal</td>
<td>High-Medium</td>
<td>High-Medium</td>
</tr>
<tr>
<td>Succession and/or conversion of breeding and nectaring habitat</td>
<td>Medium - Low</td>
<td>Breeding range</td>
<td>Current</td>
<td>Continuous</td>
<td>Unknown</td>
<td>Low</td>
</tr>
<tr>
<td>Changes in ecological dynamics or natural processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate change</td>
<td>High - Medium</td>
<td>Breeding and wintering range</td>
<td>Current</td>
<td>Recurrent</td>
<td>High - Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Severe weather events</td>
<td>High – Medium</td>
<td>Breeding and wintering range</td>
<td>Current</td>
<td>Recurrent</td>
<td>High – Medium</td>
<td>Medium</td>
</tr>
</tbody>
</table>

¹ *Level of Concern*: signifies that managing the threat is of (high, medium or low) concern for the conservation of the species, consistent with the management objectives. This criterion considers the assessment of all the information in the table.

² *Severity*: reflects the population-level effect (High: very large population-level effect, Moderate, Low, Unknown).

³ *Causal certainty*: reflects the degree of evidence that is known for the threat (High: available evidence strongly links the threat to stresses on population viability; Medium: there is a correlation between the threat and population viability e.g. expert opinion; Low: the threat is assumed or plausible).
4.2 Description of Threats

Forest loss and degradation (overwintering habitat)

The Monarch was listed under the federal *Species at Risk Act* as a species of Special Concern in Canada, largely due to human-caused pressures on the Oyamel Fir forests in central Mexico. Used as overwintering habitat for the Eastern population of Monarch, these forests have been degraded by intensive commercial logging (legal and illegal), uncontrolled wood harvesting for domestic use, charcoal production, and periodic agricultural fires that spread into adjacent forests (Snook, 1993; Brower and Missrie, 1998, Brower et al., 2002). Degradation of overwintering forest habitat in the Oyamel Fir Forests is one of the primary threats to the Eastern population of Monarch (Brower, 1996b; Brower et al., 2002, Brower et al., 2012).

Forest loss and degradation has resulted in the creation of openings, thinning forest density and exposing overwintering butterflies to winter storms, cold temperatures and wet conditions which can result in increased and sometimes substantial mortality (COSEWIC, 2010).

To quantify the rate of forest degradation and fragmentation, aerial photographs of a 420.2 km2 area of the Oyamel Fir Forest taken in 1971, 1984, and 1999 were analyzed (Brower et al., 2002). Between 1971 and 1999, the number of conserved-forest patches (forest with >80% cover) increased from 13 to 60, but their mean size decreased from 21.14 km2 to 2.54 km2. Based on a yearly decline of 2.41% between 1984 and 1999, less than 100 km2 of high quality forest was projected to remain within 20 years and less than 45 km2 in 50 years (Brower et al., 2002). Declines in forest cover in areas used by the Monarch have been documented, even in the core areas of reserves that were declared protected by presidential decree in 1986 (Sierra Chincua, Sierra Campanario, and Cerro Chivati Huacal) (Williams and Brower, 2007; NASA, 2008).

Monitoring of forest cover in the Monarch Butterfly Biosphere Reserve, which consists of 136 km2 of core zones (all extractive activities prohibited) and 427 km2 of buffer zones (sustainable extractive activities permitted) between 2001 and 2012 revealed that 12.5 km2 were deforested and 9.3 km2 were degraded within core zones (Vidal et al., 2014). However, it was noted that Mexican authorities have effectively enforced efforts to protect the Monarch Reserve, particularly from 2007 to 2012. Enforcement, together with efforts to create alternative income generation and employment stopped large-scale illegal logging in 2012, but small scale logging is a growing concern (Vidal et al., 2014).

Widespread use of pesticides and herbicides

Eastern population

With the increasing popularity of crops such as corn (maize), soy and glyphosate-tolerant crops, the spraying of pesticides and herbicides has increased in areas where milkweed plants occur (Brower, 2001). Pleasants and Oberhauser (2013) estimated that there has been a 58% decline in milkweeds on the Midwest landscape and an 81% decline in Monarch production in the Midwest between 1999 and 2010, which is coincident with an increase in the use of glyphosate herbicide,
in conjunction with increased planting of glyphosate-tolerant corn and soybeans. This finding is significant because there is growing evidence that the “Corn Belt” region of the United States Midwest is the most important area in terms of monarch productivity during the breeding season (Flockhart et al., 2013) and is consistent with a study by Flockhart et al., (2014) which found that recent declines in Monarch abundance are driven by a reduction in milkweed in the United States. It has also been estimated, using models, that large-scale elimination of milkweeds in agricultural and surrounding landscapes can increase host plant search time by Monarch females, resulting in reduced fecundity (Zalucki and Lammers, 2010).

Reduced survivorship and growth rates of Monarch larvae that feed on milkweeds which have been dusted with the pollen of Bt corn has been reported (Hansen Jesse and Obrycki, 2000; Losey et al., 1999). Other research, however, has found that Bt corn anthers and pollen did not have a significant impact on egg deposition or larval survival (Jesse and Obrycki, 2003); similarly, a risk assessment indicated that the impacts of Bt corn pollen on Monarch populations would be negligible (Sears et al. 2001).

Western population

In British Columbia, pesticide use against insect pests and herbicide use for the control of invasive weeds on croplands or rangelands may have significant impacts on non-target species and their food plants within application areas (Zevit and Guppy, 2011). In the Okanagan Valley, vineyards and fruit orchards are prevalent and increasing in extent. In both agricultural systems, there is widespread application of pesticides; however, the effects of pesticides on Monarch breeding habitat remain unknown (COSEWIC, 2010).

Climate change

Modeling of future climate scenarios suggests that global climate change will have a significant and negative effect on the Monarch overwintering sites in Mexico (Oberhauser and Townsend, 2003; Sáenz-Romero et al., 2012). The precise effect that climate change will have on the Oyamel Fir Forests is unknown, but modelling suggests that the currently known overwintering sites are likely to become significantly less suitable for the Monarch over the next 50 years due to increased cool-weather precipitation which could result in increased mortality (Oberhauser and Townsend, 2003). Based on climatic models, Sáenz-Romero and Lindig-Cisneros (2012) predicted that the climate suitable for Sacred (Oyamel) Firs will ascend in altitude with climate change, resulting in no suitable habitat within the Monarch Butterfly Biosphere Reserve by 2090.

Although climate change data and trends that allow for future projections of overwintering habitat suitability are not available, climate change is also likely to have an impact on the overwintering habitat of the Western population of the Monarch (CEC, 2008). With a hotter and drier climate, the risk of catastrophic wildfires (similar to those that swept through southern California in October of 2007) will increase and threaten ecosystems (Fimrite, 2007). Though the link between climate change and wildfires is debated, years of hotter and drier weather and the increase in invasive plant species (Bell et al., 2009) could conceivably sustain larger and longer...
fires such as those that have naturally occurred historically in the region. This has the potential to affect the coastal forests of California, and damage Monarch overwintering sites.

There is growing evidence that climate change may also impact migratory species through shifts in phenology and mistimed migration (Robinson et al., 2009). For example, Parmesan (2007) found that butterflies exhibited a stronger response to climate shifts than herbs did, which may result in increased asynchrony (i.e., mismatched timing) in insect-plant interactions. It should be noted, however, that the relationship between climatic variables and monarch population dynamics are complex and will require additional study to allow for predictions on the effects of changing climate regimes (Zipkin et al., 2012).

Severe weather events

Variable and severe weather such as cold and wet summers or drought can reduce Monarch success during its northward migration and reduce reproduction and growth rates in its breeding range (Brower et al., 2012; COSEWIC, 2010). Monitoring at the Monarch overwintering sites in the Oyamal Fir Forests showed that a storm in 1999-2000 caused the overwintering Monarch colony to occupy the smallest area recorded between 1993 and 2000 (COSEWIC, 2010). Between 2001 and 2003, the Eastern population seemed to recover as the total area occupied by the overwintering colony increased, but it then declined again dramatically in the winter of 2004-2005. This decline was likely due to an accumulation of factors including winter storms, a wet and cold summer season in Canada and the United States in 2004, and continued degradation of overwintering habitat (Brower et al, 2005).

Weather variability throughout the winter can also result in decreased Monarch survival by modifying its overwintering habitat. Increases in aridity cause increased mortality of bark beetle-infested fir trees, while increases in humidity are likely to result in direct mortality of the overwintering butterflies (COSEWIC, 2010).

Housing development (overwintering habitat)

For the Western population of Monarch, overwintering habitat located along the coast of California and in Baja California, Mexico, rarely extends inland by more than 1-2 km from the coast. Of the 400 known overwintering sites in California, the majority are threatened by coastal real estate development (Brower, 1995). From 1990 to 1998, over 12% of the overwintering habitat available to the Monarch in California was lost to such development (Meade, 1999; Frey and Schaffner, 2004). Malcolm (1993) reported 21 overwintering sites in California completely lost to land development or conversion, and an additional 7 sites badly disturbed. For example, a famous overwintering site at Pacific Grove was destroyed when a motel was built among the butterfly trees to accommodate visitors (Lane, 1993).

Eucalyptus stand removals (overwintering habitat)

Eucalyptus trees have been chosen by overwintering butterflies of the Western population as host sites to replace native host trees, such as the Monterey Pine and the Monterey Cypress which have been depleted. The native trees are still used by the Monarch to overwinter, but to a lesser degree as they are far less abundant (Lane, 1993). Eucalyptus trees offer various advantages over the native species, as they are evergreen and create excellent windbreaks. Further, their leaf and branch structure is ideal for clustering, which helps the butterflies to conserve warmth through
cold winter nights (Slack, 2004). In California, Eucalyptus trees are being actively eradicated because they are extremely damaging ecologically for many native species, and are a fire hazard. This further threatens Monarch overwintering habitat availability.

Succession and/or conversion of breeding and nectaring habitat

Abandoned farmlands that currently provide suitable breeding and nectaring habitat for the Eastern population of Monarch are at risk of being lost, as they either regenerate into forest or are developed and converted for residential or industrial development. Monarch habitat may also be lost or degraded if lands are put into intensive agricultural production, for example, as it becomes economically viable to grow certain crops (e.g. corn as a source of biofuel) (COSEWIC, 2010). Alternatively, less intensive farming practices that incorporate habitat features can provide breeding and nectaring habitat for Monarch.

Bark Beetle outbreak (overwintering habitat)

Bark beetle (*Scolytus spp.*) spread in the Oyamel Fir Forests of Central Mexico, as a result of reduced humidity and drought, adds another challenge for Monarch on their overwintering grounds (COSEWIC, 2010). Despite the fact that less than 0.5% of the total Monarch overwintering area has been affected to date, the beetle outbreak is occurring in widespread patches. It has been estimated that 15 years of continued beetle population growth could remove Oyamel Fir trees on the wintering grounds (Taylor, pers. comm. in COSEWIC, 2010); however, the long-term impacts of bark beetle on Monarch overwintering habitat are poorly understood (CEC, 2008).

Additional threats

A number of other threats to Monarch have been identified and these are discussed briefly below.

Common Milkweed, which is an important host plant for Monarch reproduction, is considered to be a noxious weed in the Weed Control Acts of Manitoba (Province of Manitoba, 2010), Quebec (Schappert, 1996) and Nova Scotia (NS Dep. Of Agri., 2007); in Manitoba, Showy Milkweed is also listed. In most provinces where a Weed Control Act exists, there is no active program to target, eliminate or eradicate milkweeds; rather, the main thrust is to respond on a “complaint” basis to control a particular issue of concern (White, 1996). A control program is in place to eradicate Common Milkweed in the province of Nova Scotia, due to a likely increase in its numbers, as a result of the recent shift in agricultural practices to low-tillage management (White, 1996).

The removal of nectar-producing, flowering vegetation along roadsides is a potential threat for the Eastern population of Monarch. For example, mowing, cutting, and spraying of herbicides on roadside vegetation in southern Ontario are standard practices to help increase road safety by improving visibility and deterring wildlife, in order to minimize the chance of vehicle collisions with wildlife crossing roads.

In certain areas the Monarch is vulnerable to mortality from vehicle collisions, particularly throughout its summer range (Damus, 2007). Since Common Milkweed grows in abundance along road sides, the threat of collision is higher in these areas. The potential for collisions with wind turbines has been identified as a possible threat to Monarch (COSEWIC, 2010),
particularly during migrations, although very little evidence on the extent or severity of butterfly collision mortality with wind turbines currently exists (Damus, 2007). In Ontario, Monarch have been observed in large clusters in roosts on the north shores of Lake Erie and Lake Ontario, where wind turbines have been built, or where they are planned or proposed. In Western Canada, wind energy sites located in migratory pathways of the Monarch are being explored for their potential impacts on the western population (Zevit and Guppy, 2011).

The introduction of invasive species may pose a threat to Monarch. For example, Dog-strangling Vine (*Cynanchum rossicum* and *C. louiseae*), a member of the milkweed family introduced to North America in the mid 1800s may be used unsuccessfully for reproduction. Although Monarch exhibit a strong preference towards Common Milkweed, female butterflies will lay eggs on the leaves of Dog-strangling Vine, but upon hatching the larvae cannot survive (Mattila and Otis, 2003).

The release of butterflies (e.g., at weddings and other events) has been identified as a threat to Monarch and other butterflies because it may result in the transmission of disease and parasites, impacts on migratory patterns, harmful genetic mixing, and poaching of butterflies at overwintering sites to support commercial markets. Releases of butterflies can also confuse studies of butterfly distribution and migration and is now discouraged by some groups (North American Butterfly Association, 2014). Similarly, the Xerces Society for Invertebrate Conservation has developed a policy statement regarding the transfer and release of butterflies to minimize negative effects (Xerces Society for Invertebrate Conservation, 2010).

5. MANAGEMENT OBJECTIVES

The objectives of this Management Plan are:

- to mitigate threats to Monarch and ensure that there is sufficient breeding, nectaring and staging habitat in Canada to maintain the current Canadian contribution to the overall North American Monarch population; and
- to support the conservation and management of overwintering, staging, breeding and nectaring habitat by international partners throughout the Monarch’s migratory range, in order to allow for continued Monarch persistence in Canada.

Rationale

Canada has an important role to play in Monarch conservation by providing breeding and nectaring habitats throughout the Monarch breeding range in Canada and by maintaining staging areas. In some areas, the enhancement of known key staging habitats in Canada, where the Monarch congregates prior to beginning its annual southward migration, will also support Monarch conservation.

Given that the Monarch is dependent on a wide range of habitats outside Canada, both in the United States and in Mexico, support for international cooperation efforts and initiatives is essential for the conservation of the Monarch and of those areas that serve as its key habitat.
6. BROAD STRATEGIES AND CONSERVATION MEASURES

6.1 Actions Already Completed or Currently Underway

Habitat conservation

In 1986, the Mexican government, through a Presidential Decree, created a protected area which included Monarch overwintering habitat. In 2000, this protected area was expanded from 161 to 562 km² to include a buffer zone. In October 2006, the protected area was officially designated as a United Nations Educational, Scientific and Cultural Organization (UNESCO) Biosphere Reserve known as the Monarch Butterfly Biosphere Reserve. Subsequently, in July 2008, the Monarch Butterfly Biosphere Reserve in Mexico was added to the list of UNESCO World Heritage Sites.

In 1995, the governments of Canada and Mexico officially recognized the uniqueness of the Monarch butterfly and its migratory cycle in their Declaration for the Creation of an International Network of Monarch Butterfly Reserves. In Mexico, five sanctuaries in the Monarch Butterfly Biosphere Reserve and three protected areas in Canada (Long Point National Wildlife Area, Point Pelee National Park, and Prince Edward Point National Wildlife Area) were nominated under this declaration.

The Commission for Environmental Cooperation (CEC) Council followed up on this bi-national initiative in 1996, passing a resolution to develop a North American Monarch Butterfly Conservation Program to: support increased research, monitoring, mapping, and management of Monarch habitats; the establishment of additional protected areas; public education and outreach; and partnership development. The CEC has since funded various projects, including one in 1997 to support communities in the Monarch Butterfly Biosphere Reserve in Mexico in their efforts to develop strategies for sustainable forest management, and another in 2000 to enhance the delivery of sustainable tourism through the development of a North American eco-tour guide network.

Between 1995 and 2005, the U.S. Fish and Wildlife Service (USFWS), in cooperation with Mexican agencies and non-governmental organizations (NGOs), invested over $650,000 in projects to: protect and restore overwintering habitat of the Monarch butterfly through participatory training in natural resource management and reforestation; promote conservation through public outreach and environmental education for schoolchildren; and, facilitate communication between researchers in the Canada, United States and Mexico.

The Monarch Butterfly Model Forest, or Bosque Modelo Mariposa Monarca (BMMM), was established in 1997 as part of the International Network of Model Forests for the protection and conservation of Monarch overwintering habitat in Mexico. Canada assisted technically in the development of a strategic plan for ecotourism, community development, and natural resource management, and funding for the program was provided through the Canadian International Development Agency (CIDA). The Manitoba Model Forest (MBMF) also partnered with the BMMM, resulting in a variety of education and restoration projects. In 2008, the BMMM project
site area was incorporated as part of the Monarch Butterfly Biosphere Reserve (Manitoba Model Forest Inc., 2010).

In 2005, Mexico, the United States, and Canada initiated a process to establish a Trilateral Monarch Butterfly "Sister Protected Areas" (SPA) Network. The SPA Network is a partnership of wildlife refuges and national parks in the United States and Canada, and natural protected areas in Mexico, working together on Monarch conservation projects.

In 2006, the following Protected Areas were identified as the first to become part of the Monarch Butterfly SPA Network.

Under the Mexican Comisión Nacional de Áreas Naturales Protegidas (CONANP):
- Reserva de la biosfera de la Mariposa Monarca (Michoacán)
- Parque Nacional Iztaccihuatl Popocatépetl Zoquiapan (Estado de México, Puebla et Morelos)
- Parque Nacional Cumbres de Monterrey (Nuevo León)
- Área de Protección de Flora y Fauna Maderas del Carmen (Coahuila)

Under the United States Fish and Wildlife Service (USFWS):
- Balcones Canyonlands National Wildlife Refuge (Texas)
- St. Marks National Wildlife Refuge (Florida)
- Flint Hills, Quivira, and Marais des Cygnes National Wildlife Refuges (Kansas)
- Neal Smith National Wildlife Refuge (Iowa)

Under the United States National Parks System (NPS):
- Cuyahoga Valley National Park (Ohio)

Under the Canadian Wildlife Service (CWS):
- Long Point National Wildlife Area (Ontario)
- Prince Edward Point National Wildlife Area (Ontario)

Under Parks Canada Agency (PCA):
- Point Pelee National Park (Ontario)

Monarch management

In 1996, Canada, Mexico and the United States established the Trilateral Committee for Wildlife and Ecosystem Conservation (Trilateral Committee). The committee’s mandate is to facilitate the development of partnerships among associated and interested groups, and to enhance the cooperation and coordination among wildlife agencies in programs and projects for the conservation and management of species and ecosystems of mutual interest (Trilateral Committee, 2007). In 2007, the Trilateral Committee endorsed the development of the *North American Monarch Conservation Plan* (NAMCP) by the Commission for Environmental Cooperation. Completed in 2008, the NAMCP outlines key tri-national collaborative conservation objectives and outcomes to ensure that 1) sufficient overwintering habitat is available in the United States and Mexico for the populations to persist; and 2) sufficient
breeding and migrating habitat is available in Canada, Mexico and the Unites States to maintain their current contribution to the overall North American population. A key objective of the NAMCP is to monitor Monarch population distribution, abundance and habitat quality (CEC, 2008). Accordingly, a tri-national multi-stakeholder group of experts recommended the development and dissemination of a Monarch monitoring program, and in 2009, CEC published *The Monarch Butterfly Monitoring in North America: Overview of Initiatives and Protocols* as a tri-lateral resource (CEC, 2009).

Management initiatives in Canada

In Canada, various provinces have taken initiatives to manage and conserve Monarch butterfly populations and their habitat. In Atlantic Canada, the Maritimes Butterfly Atlas was initiated in 2010 to provide comprehensive and systematic surveys to improve understanding of the numbers, distribution, and status of butterflies throughout the Maritimes (ACCDC, 2013b). The government of Ontario has produced a species at risk fact sheet on Monarch. Habitat for roosting and breeding Monarchs is being actively maintained on High Bluff Island at Presqu’ile Provincial Park, a noted Monarch migration hotspot and breeding location.

Monitoring and research

Over the years, collaborative efforts between researchers, volunteers, teachers, and students to collect and analyze Monarch data resulted in numerous citizen science projects that allowed a significant improvement in the understanding of Monarch ecology.

One of the most renowned initiatives is the Monarch tagging program (Insect Migration Studies) initiated by Fred Urquhart in the 1930s to determine where the Canadian butterflies spend their winter months. In 1952, Urquhart made a first appeal for volunteers to assist with Monarch tagging, and over the next 40 or so years thousands of people participated. Recovery of numerous tagged butterflies led to the discovery of Monarch migration routes and their overwintering sites in Mexico. The tagging efforts continue today, with the participation of Monarch Watch, Monarch Alert in California, and other organizations. Results from the Monarch Watch program are meticulously recorded on its public website Monarch Watch (www.monarchwatch.org).

Another resource available to support Monarch conservation is eButterfly (www.ebutterfly.ca). This user-friendly website allows butterfly watchers across North America to record, archive and share their butterfly observations, providing researchers with a comprehensive picture of the abundance and distribution of butterflies.

Monarch monitoring projects have also been established throughout their range. In Canada, programs are in place to observe and monitor the butterflies as they aggregate in fall staging areas along the shores of the Great Lakes, such as in Presqu’ile Provincial Park, Long Point National Wildlife Area, Point Pelee National Park, and Rondeau Provincial Park (Crewe et al., 2007). Similarly, smaller scale, local efforts to census migrating Monarchs also take place.
In addition to tagging and monitoring, research on Monarch behaviour and physiology (migration, flight tactics and navigation, habitat selection, etc.) along with analyses of threats to the butterfly and its habitat (mortality, predation, climate change, etc.) are underway. See Appendix B for some examples.

Outreach and public engagement

A variety of outreach and public engagement initiatives focusing on the Monarch occur throughout Canada. The following table summarizes several key initiatives currently underway (Table 3).

Table 3. Key outreach and public engagement programs and projects.

<table>
<thead>
<tr>
<th>Outreach Program/Project</th>
<th>Initiatives</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monarch Watch</td>
<td>• Tagging and observation program to monitor Monarch movements and identify their migration corridors and rest areas.
• Program involves over 2,000 schools, nature centres and other organizations, and estimates over 100,000 participants in tagging activities each fall.
• Monarch Waystation Program which helps create, protect and conserve Monarch habitats.</td>
<td>Canada & USA</td>
</tr>
<tr>
<td>Journey North</td>
<td>• Internet-based environmental educational program that helps to track online Monarch butterfly migrations each fall and spring as butterflies journey to and from Mexico.</td>
<td>Canada, USA and Mexico</td>
</tr>
<tr>
<td>Monarchs Without Borders</td>
<td>• International research and conservation program run by the Montreal Insectarium, to rear, tag, and release Monarch butterflies.</td>
<td>Montreal Insectarium, Quebec</td>
</tr>
<tr>
<td>The Monarch Teacher Network</td>
<td>• Network of teachers and others using Monarch butterflies to teach biology, conservation and the importance of environmental stewardship.</td>
<td>Canada & USA</td>
</tr>
</tbody>
</table>

A variety of local community activities and events are also ongoing to help educate public on Monarch biology and its biological needs throughout the breeding season (see Table 4 for examples). As a result of these programs, the popularity of planting and conserving milkweeds and other nectar producing garden plants in home and school gardens, nature centers, and parks has increased over recent years.
Table 4. Examples of local outreach and public engagement activities.

<table>
<thead>
<tr>
<th>Outreach Activity</th>
<th>Initiatives</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Butterfly Days” and “Monarch Days”</td>
<td>• Butterfly conservatories and museums reach out to the community by offering interactive lessons to promote the conservation of Canada’s biodiversity.</td>
<td>Canada</td>
</tr>
<tr>
<td>Monarch Butterfly Club</td>
<td>• Printing and sale of butterfly kits to encourage the creation of chemical-free Monarch butterfly habitat, including milkweed and nectar sources.</td>
<td>Nova Scotia</td>
</tr>
<tr>
<td>“Monarch and Migrants”</td>
<td>• Annual celebration of all things that migrate, involving interactive events including nature walks and Monarch tagging displays to promote awareness.</td>
<td>Presqu’île Provincial Park, Ontario</td>
</tr>
<tr>
<td>“Monarch Butterfly Migration Festival”</td>
<td>• Annual festival engaging the community through guided butterfly hikes, tagging demonstrations, Adopt a Monarch Program, etc.</td>
<td>Rondeau Provincial Park, Ontario</td>
</tr>
<tr>
<td>”Monarchs” live exhibit</td>
<td>• Annual exhibit where visitors are invited to get a close up look at the monarch life cycle (including live caterpillars and Monarch roosts) and learn about conservation efforts through interpretive programs, displays, a factsheet, videos, social media, etc.</td>
<td>Point Pelee National Park.</td>
</tr>
</tbody>
</table>

A list of the main outreach and public engagement organizations, groups, and associations involved in Monarch research and education can be found in Appendix B.

6.2 Broad Strategies

To achieve the Management Plan objectives, the following broad strategies are recommended:

- Support international cooperation for management of the Monarch and its habitat throughout the entirety of its two migratory pathways.
- Promote coordination between the various levels of government to develop and implement policy and programs that manage threats and conserve and enhance the quality and quantity of Monarch breeding and nectaring habitat in Canada.
- Conserve current Monarch staging habitat in Canada, and promote the enhancement of staging areas that are essential to successful migrations.
- Conduct research and monitoring in Canada and support international initiatives to address knowledge gaps in Monarch ecology.
- Continue to promote and support citizen engagement in the conservation and monitoring of Monarch and its habitat.

6.3 Conservation Measures

The following table outlines the conservation measures recommended to achieve the Management Plan objectives, and a given timeline for their implementation. Conservation
measures are organized by the five broad strategies: international cooperation; conservation and management of breeding and nectaring habitat; conservation and management of staging habitat; research and monitoring; and outreach and public engagement.

Table 5. Conservation measures and implementation schedule.

<table>
<thead>
<tr>
<th>Conservation Measures</th>
<th>Priority</th>
<th>Threats or concerns addressed</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Cooperation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support and encourage cooperation among international partners to manage the Monarch and its habitat throughout the entirety of its range.</td>
<td>High</td>
<td>All threats</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Support bi-national and tri-national Monarch conservation and management initiatives at overwintering sites in California and Mexico, through participation in the implementation of international programs and projects, including the 2008 North American Monarch Conservation Plan (NAMCP).</td>
<td>High</td>
<td>Threats to overwintering habitat</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Conservation and Management of Breeding and Nectaring Habitat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promote coordination between the various levels of government to support the development and communication of policy, programs and guidelines that manage threats and conserve and enhance Monarch breeding and nectaring habitat, particularly in areas subject to habitat conversion, loss and degradation.</td>
<td>High</td>
<td>All threats</td>
<td>2014 – 2019 and beyond</td>
</tr>
<tr>
<td>Develop and implement roadside, power line and railway maintenance guidelines or best management practices that conserve and enhance Monarch breeding and nectaring habitat and communicate those with appropriate sectors. These should be regionally and context specific to address timing requirements, invasive species present, species of Milkweed native to that region, and the nature of activities.</td>
<td>High - Medium</td>
<td>Widespread use of pesticides and herbicides; Succession and/or conversion of breeding and nectaring habitat; Removal of nectar producing/flowering vegetation along roadsides</td>
<td>2014 – 2019</td>
</tr>
<tr>
<td>Support programs that prevent or mitigate the conversion of native grasslands. Apply integrated land management to minimize loss of native vegetation.</td>
<td>Medium</td>
<td>Succession and/or conversion of breeding and nectaring habitat</td>
<td>2014 - 2019</td>
</tr>
</tbody>
</table>
Conservation Measures

<table>
<thead>
<tr>
<th>Conservation Measures</th>
<th>Priority</th>
<th>Threats or concerns addressed</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seek government engagement to have Monarch conservation needs incorporated into multi-species conservation initiatives and inventory and monitoring projects.</td>
<td>Medium - Low</td>
<td>Succession and/or conversion of breeding and nectaring habitat</td>
<td>2014 – 2019 and beyond</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Widespread use of pesticides and herbicides</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removal of nectar producing/flowering vegetation along roadsides</td>
<td></td>
</tr>
<tr>
<td>Encourage the removal of native milkweed species from provincial Weed Control Acts.</td>
<td>Low</td>
<td>Control of milkweed</td>
<td>2014 - 2019</td>
</tr>
</tbody>
</table>

Conservation and Management of Staging Habitat

<table>
<thead>
<tr>
<th>Conservation Measures</th>
<th>Priority</th>
<th>Threats or concerns addressed</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support and extend current conservation efforts in federal and provincial protected areas and in other known staging sites in Canada through the promotion of Monarch conservation and/or stewardship programs.</td>
<td>High</td>
<td>Nectaring habitat succession or conversion</td>
<td>2014 – 2019 and beyond</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensuring there is sufficient staging habitat</td>
<td></td>
</tr>
<tr>
<td>Promote the enhancement of habitat quality (i.e., nectaring habitat) at staging sites to help Monarch develop the reserves necessary to cross large obstacles such as the Great Lakes in southern Ontario.</td>
<td>High</td>
<td>Nectaring habitat succession or conversion</td>
<td>2014 – 2019 and beyond</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensuring there is sufficient staging habitat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invasive species</td>
<td></td>
</tr>
</tbody>
</table>

Research and Monitoring

<table>
<thead>
<tr>
<th>Conservation Measures</th>
<th>Priority</th>
<th>Threats or concerns addressed</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigate the impact of pesticides and herbicides (including herbicide-resistant crops).</td>
<td>High</td>
<td>Widespread use of pesticides and herbicides</td>
<td>2014 – 2019 and beyond</td>
</tr>
<tr>
<td>Support the continuation and encourage the development of Monarch tagging and monitoring programs, to monitor and assess Monarch population sizes, migration pathways, and effects of habitat loss and degradation. In Canada, monitoring at known staging areas should be conducted. Strategic coordination of monitoring programs should be a priority. Tagging should be conducted to determine whether butterflies emerging in the fall in Alberta, Saskatchewan and Manitoba migrate to the overwintering grounds in Mexico. Similarly, tagging should be conducted in southern British Columbia to document migratory patterns. Support research projects that improve our understanding of key Monarch production.</td>
<td>High - Medium</td>
<td>Knowledge gaps</td>
<td>2014 – 2019 and beyond</td>
</tr>
<tr>
<td>Conservation Measures</td>
<td>Priority</td>
<td>Threats or concerns addressed</td>
<td>Timeline</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>areas, thus allowing for targeted conservation efforts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continue to study the effects of climate change, severe weather events and Bark Beetle on Monarch habitat quality and availability and Monarch productivity.</td>
<td>Medium</td>
<td>Climate change and severe weather events</td>
<td>2014 – 2019 and beyond</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bark beetle outbreak</td>
<td></td>
</tr>
<tr>
<td>Monitor and assess milkweed distribution and abundance in Canada.</td>
<td>Low</td>
<td>Breeding and nectaring habitat succession and conversion</td>
<td>2014 – 2019 and beyond</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Widespread use of pesticides and herbicides</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invasive species</td>
<td></td>
</tr>
<tr>
<td>Assess the potential impacts of wind turbines on Monarch habitat, migration and survivorship.</td>
<td>Low</td>
<td>Collisions with vehicles and wind turbines</td>
<td>2014 – 2019 and beyond</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge gaps</td>
<td></td>
</tr>
<tr>
<td>Assess the impacts of Monarch releases (e.g., at weddings and other events) on Monarch populations.</td>
<td>Low</td>
<td>Releases of Monarch butterflies</td>
<td>2014 – 2019 and beyond</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge gaps</td>
<td></td>
</tr>
<tr>
<td>Outreach and Public Engagement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support the development and implementation of education, outreach and public engagement activities to promote awareness of the Monarch and of threats to the species and its habitat. Outreach activities should be conducted broadly and should include the agricultural community and Aboriginal communities.</td>
<td>Medium</td>
<td>All threats</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Promote engagement in the monitoring and conservation of the Monarch and its habitat through encouraging participation in citizen science Monarch monitoring and tagging programs, both by community members and in classrooms. Particular focus should be on areas of western Canada where migration patterns are not well established.</td>
<td>Medium</td>
<td>To address knowledge gaps</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Encourage the creation of butterfly gardens using milkweed species native to the area and the re-naturalization of degraded/unsuitable habitat.</td>
<td>Medium</td>
<td>Breeding and nectaring habitat succession and conversion</td>
<td>Ongoing</td>
</tr>
</tbody>
</table>
7. MEASURING PROGRESS

Every five years, success in the implementation of the management plan and progress towards achieving the management plan objectives will be measured against the following performance indicators:

- Various levels of government (local, provincial and federal) have been engaged in the development and implementation of policy and programs that manage threats and conserve and enhance Monarch breeding and nectaring habitat in Canada;

- Continued cooperation with international partners and support in managing Monarch and its habitat throughout its migratory range;

- Monarch staging habitats have been conserved and, where necessary, enhanced;

- Filling of knowledge gaps in Monarch ecology; and

- Outreach and educational activities that engage citizens in conservation and monitoring of Monarch and its habitat have been developed and implemented.
8. REFERENCES

ACCDC (Atlantic Canada Conservation Data Centre). 2013a. Species Ranks. [accessed September 2013]

[accessed August 2008].

St. Thomas Field Naturalist Club, St. Thomas, Ontario. 76pp.

St. Thomas Field Naturalist Club, St. Thomas, Ontario. 72pp.

Conservation Plan. Quebec, Canada. 159pp.

COSEWIC (Committee for the Status of Wildlife in Canada). 2010. COSEWIC Assessment and

Crewe, T.L., J.D. McCracken, and D. Lepage. 2007. Population Trend Analyses of Monarch

23 pp.

Damus, M. 2007. Wind Plant Consequences to Butterflies – How Much Do We Know? In Tall

Davis, A.K., N.P. Nibbelink and E. Howard. 2012. Identifying Large- and Small-Scale Habitat
Characteristics of Monarch Butterfly Migratory Roost Sites with Citizen Science

Monarch Butterflies travel to Cuba? Stable Isotope and Chemical Tracer Techniques. In
Ecological Applications volume 14, Issue 4

World May Fan Flames. San Francisco Chronicle

McLaughlin, R.E. and Myers, J. 1970. Ophryocystis elektroscirrha sp. n. a neogregarine pathogen of the monarch butterfly Danaus plexippus (L.) and the Florida queen butterfly Danaus gilippus berenice Cramer. Journal of Protozoology 17: 300–305.

Oberhauser, KS. 2012. Tachinid flies and monarch butterflies: Citizen Scientists document parasitism patterns over broad spatial and temporal scales. American Entomologist

Personal communications

Elderkin, M. 2013. Comments on draft Monarch Management Plan. Species at Risk Biologist, Wildlife Division, NS Department of Natural Resources

Oberhauser, K.S. 2012. Associate Professor, Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota
APPENDIX A: EFFECTS ON THE ENVIRONMENT AND OTHER SPECIES

A strategic environmental assessment (SEA) is conducted on all SARA recovery planning documents, in accordance with the Cabinet Directive on the Environmental Assessment of Policy, Plan and Program Proposals. The purpose of a SEA is to incorporate environmental considerations into the development of public policies, plans, and program proposals to support environmentally sound decision-making.

Management planning of a species of special concern is intended to benefit species at risk and biodiversity in general. However, it is recognized that management plans may also inadvertently lead to environmental effects beyond the intended benefits. The planning process based on national guidelines directly incorporates consideration of all environmental effects, with a particular focus on possible impacts upon non-target species or habitats. The results of the SEA are incorporated directly into the plan itself, but are also summarized below in this statement.

The potential for the plan to inadvertently lead to adverse effects on the environment or other species was considered. Since the focus of recommended activities is primarily on non-intrusive measures such as working with international partners, monitoring the population, conducting awareness activities, and conservation of existing staging areas, it is unlikely that the management plan will entail significant adverse effects. Maintenance of disturbed and early successional habitats to benefit Monarch would benefit species that utilize similar habitat but could also reduce habitat for species that require more advanced stages of succession.
APPENDIX B: ORGANIZATIONS AND PROGRAMS INVOLVED IN MONARCH OUTREACH, CONSERVATION AND RESEARCH

Citizen science
Monarch Watch (www.monarchwatch.org)
Monarch Larvae Monitoring Project (www.mlmp.org)
Monarch Lab: Monarchs in the Classroom (www.monarchlab.org)
Insectarium de Montréal (http://www2.ville.montreal.qc.ca/insectarium/)
Project Monarch Health (http://www.monarchparasites.org/)
E Butterfly: (www.ebutterfly.org)

Public engagement
North American Butterfly Association (www.naba.org)
The Monarch Butterfly in North America (http://www.fs.fed.us/wildflowers/pollinators/monarchbutterfly/)

Education
Monarch Teacher Network – Canada (http://www.monarchteacher.ca/)
Journey North (www.learner.org/jnorth)
Insectarium de Montréal (http://www2.ville.montreal.qc.ca/insectarium/)

Conservation and stewardship
Xerces Society for Invertebrate Conservation (Milkweeds Guide) (http://www.xerces.org/milkweeds-a-conservation-practitioners-guide/)
Monarch Butterfly Fund (http://www.monarchbutterflyfund.org/)
Monarch Butterfly Club (www.facebook.com/MonarchButterflyClub)

Research
Monarch Alert (http://monarchalert.calpoly.edu/index.html)
Monarch Monitoring Project (http://www.monarchmonitoringproject.com/)
Tactics and Vectors (http://www.erin.utoronto.ca/~w3gibo/)
Texas Monarch Watch (http://www.texasento.net/dplex.htm)
FrostLab (http://www.queensu.ca/psychology/frost/AnimalNavigation.html)

Resources