Recovery Strategy for the Shortnose Cisco (Coregonus reighardi) in Canada

Shortnose Cisco

Table of contents

List of figures

  • Figure 1. The Shortnose Cisco (Coregonus reighardi Koelz) (Illustration by Paul Vecsei, 2011)
  • Figure 2. Lake Michigan deepwater cisco species flock including the Shortnose Cisco. From Koelz (1929)
  • Figure 3. Global historic distribution of Shortnose Cisco (Coregonus reighardi). From 2005

List of tables


Shortnose Cisco

Recommended citation:

Fisheries and Oceans Canada. 2012. Recovery Strategy for the Shortnose Cisco (Coregonus reighardi) in Canada. Species at Risk Act Recovery Strategy Series. Fisheries and Oceans Canada, Ottawa. vi + 16 pp.

For copies of the recovery strategy, or for additional information on species at risk, including Status Reports, residence descriptions, action plans, and other related documents, see the Species at Risk Public Registry.

Cover illustration: Paul Vecsei, 2011

Également disponible en français sous le titre
« Programme de rétablissement du cisco à museau court (Coregonus reighardi) au Canada »

© Her Majesty the Queen in Right of Canada, represented by the Minister of Fisheries and Oceans, 2012. All rights reserved.
ISBN: En3-4/145-2012E-PDF
Catalogue no.: 978-1-100-21107-7

Content (excluding the illustrations) may be used without permission, with appropriate credit to the source.

Preface

The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA) the federal competent ministers are responsible for the preparation of recovery strategies for listed Extirpated, Endangered, and Threatened species and are required to report on progress within five years.

The Minister of Fisheries and Oceans is the competent minister for the recovery of the Shortnose Cisco and has prepared this strategy, as per section 37 of SARA. It has been prepared in cooperation with the Province of Ontario.

It was determined that the recovery of the Shortnose Cisco in Canada is not technically or biologically feasible. The species still may benefit from general conservation programs in the same geographic area and will receive protection through SARA and other federal, and provincial or territorial, legislation, policies, and programs.

The feasibility determination will be re-evaluated as part of the report on implementation of the recovery strategy, or as warranted in response to changing conditions and/or knowledge.

Top of page

Acknowledgements

This recovery strategy was drafted on behalf of Fisheries and Oceans Canada (DFO) by Fred Hnytka with the input and assistance of Tom Pratt (DFO- Sault Ste. Marie), Nick Mandrak (DFO – Burlington), Jim Reist (DFO - Winnipeg), Dana Boyter (DFO – Burlington), P.L. Wong (DFO - Winnipeg), Scott Gibson (Ontario Ministry of Natural Resources (OMNR) – Peterborough), Scott Reid (OMNR – Peterborough), Ken Cullis (OMNR – Thunder Bay) and Lloyd Mohr (OMNR – Owen Sound). We are all indebted to the numerous researchers and biologists that have endeavored to study deepwater ciscoes over the years and who have eagerly shared their knowledge and views with us.

Executive Summary

In 1987, the Shortnose Cisco (Coregonus reighardi) was assessed as “Threatened” by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). In 2005, on the basis of an update status report, the species was reassessed by as “Endangered” and subsequently listed as such under Canada's Species at Risk Act (SARA) in 2007. Originally endemic to three of the Laurentian Great Lakes, the species was last reported from Lake Ontario in 1964, Lake Michigan in 1982 and Lake Huron in 1985. The species is believed to be extinct although it does not yet meet the formal criteria for that designation (i.e. elapsed time since last credible record > 50 years).

The Shortnose Cisco belongs to a taxonomically complex group of closely related cisco forms representing a species flock indigenous to the Laurentian Great Lakes of North America. The Shortnose Cisco was a valuable component of the commercial “chub” fisheries which started in earnest in the mid to late 1800's but began showing signs of depletion by the early 1900's. Landed “chub” catches were rarely identified to individual species and few collections were made to evaluate population sizes and trends. Individual “chub” fisheries were managed as a single stock. This regime led to the sequential removal of larger species from the fisheries followed by gear size reduction to target smaller individuals thereby maintaining the fishery as a whole. Commercial chub fishing, which historically included the Shortnose Cisco, no longer occurs within the Canadian waters of lakes Huron or Ontario.

Little is known of the biology of the Shortnose Cisco. It was one of the smaller “chub” species occurring in the Great Lakes, generally ranging from 170 to 260mm (standard length). It was the only known spring-spawning cisco species in the lakes where it occurred although there is some evidence that late fall spawning might also have occurred. It occupied clear, cold, deepwater habitats of lakes Huron, Michigan and Ontario at depths ranging from 22m to 110m. Its diet consisted primarily of the crustaceans Mysis diluviana and Diporeia spp. Given its presumed extinction and the lack of historical knowledge on its life history requirements, critical habitat cannot be identified for the species.

Overexploitation, ecosystem impairment, and introgressive hybridization have all been implicated in the demise of the Shortnose Cisco. Recovery of the species has been deemed “not feasible” as there is no reproductive potential, its primary threats cannot be avoided or mitigated, and there are no recovery techniques that are applicable to its current circumstances.

Education, management and research strategies are proposed as a general conservation approach for the species. These strategies are designed to help with the identification and reporting of any new accounts for the species, focusing management decisions on protecting individual “chub” species, and developing the necessary tools and studies to help better manage and protect this, and other, deepwater cisco species where they occur.

Recovery feasibility summary

Under SARA (S.40) the competent minister must determine whether the recovery of a listed wildlife species is technically and biologically feasible. Recovery is considered technically and biologically feasible if all of the following four criteria are met (Government of Canada 2009):

1 - Individuals of the wildlife species that are capable of reproduction are available now or in the foreseeable future to sustain the population or improve its abundance.   No

There is currently no evidence of reproductive potential for the Shortnose Cisco. This species was found only in the Laurentian Great Lakes within lakes Ontario, Michigan and Huron. It was last reported from Lake Ontario in 1964, Lake Michigan in 1982 and Lake Huron in 1985 despite recent sampling. (COSEWIC 2005) reported the number of extant locations in lakes Huron and Ontario as zero and indicated that there was no potential for rescue effect from Lake Michigan. The number of mature individuals and those capable of reproduction in Canada is presumed to be zero (COSEWIC 2005).

2 - The primary threats to the species or its habitat (including threats outside Canada) can be avoided or mitigated.  No

(2005) reported a stable habitat trend for the species in lakes Huron and Ontario. Although deepwater habitat itself is not physically limiting, recent ecological changes ongoing in the Great Lakes, in particular, the establishment of Dreissena mussels and the concurrent decline in the abundance and distribution of the benthic amphipod Diporeia spp. may have significant implications on existing fisheries resources as well as any potential recovery efforts for species such as the Shortnose Cisco. The degree to which this change in habitat would affect the Shortnose Cisco is unknown.

3 - Sufficient suitable habitat is available to support the species or could be made available through habitat management or restoration. Unknown

Overexploitation, ecosystem impairment and introgressive hybridization have all been implicated in the decline and likely extinction of the Shortnose Cisco. Historically, overexploitation of Shortnose Cisco within “chub” fisheries that occurred in lakes Huron, Michigan, and Ontario, at various times dating back to the late 1800s, had a profound effect on the species abundance. As the Shortnose Cisco declined in abundance, fishing effort was re-focused on smaller co-occurring “chub” species, thereby, further depleting any residual stocks. Although impacts of overfishing on current fisheries can be mitigated through appropriate management actions, the impacts of historical overfishing of the Shortnose Cisco are not likely reversible and as such may preclude future recovery options. Although not specifically documented for the Shortnose Cisco, ecosystem changes in the Great Lakes, including the introduction of exotic species and hybridization with other co-occurring deepwater ciscoes, may have contributed to the demise of the species. These ecosystem changes can neither be avoided nor mitigated at this time.

4 - Recovery techniques exist to achieve the population and distribution objectives or can be expected to be developed within a reasonable timeframe. No

Without individuals capable of reproduction, there is presently no recovery technique that could be applied to the Shortnose Cisco.

Given that all of the criteria in the above analysis cannot be met, and in particular, the lack of reproductive potential, recovery for the Shortnose Cisco is deemed not feasible.

| Introductory Page | Next |